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Abstract

Thispaperreportson thedevelopmentof a methodto build
a mathematicalmodelfor a growing biological organism.
A tiny worm called Caenorhabditiselegans is chosenas
paradigm. Theproblemof describingbiological develop-
mentby mathematicalmeansis addressed. After an ab-
stractionprocess,theorganismis embeddedinto a suitable
vector space. For this purpose, a vector spaceschain is
build in which topological modulesof the object are de-
scribed.Thevectorspacetopologymaybecharacterizedby
simplex sets.Thestructureof thesimplex setsis normalized
andits connectivityis usedasa compactdescriptionof the
development.Developmentof biological organismstakes
placein 4D (3D spaceandtime). The3D scenescodemay
bea characteristicpatternandto reconstructtheobject. It
canbesubjectto operationsand theresultmaybeusedto
constructa new sceneor the next stateof development.A
bio-applicationnamed“ Topologizer” is beingdeveloped
(usingVTK) to supportthe mathematicaldescriptionand
analysisof theorganismsgrowthin a massiveparallel and
distributedprojectapproach.

1 Intr oduction

Thegrowth of biologicalorganismstowardstheir complex
morphologyis governedby rules. The developmentof a
worm, the nematodeCaenorhabditiselegansfrom the egg
to the adult stageservesasa model. Caenorhabditisele-
gansis agoodmodelorganismfor thisprojectsincethisor-
ganismtakesanextremepositionin termsof development
characteristicsin its species.The adult nematodeconsists
of a constantnumberof cells(hermaphroditeshave959so-
matic nuclei and male have 1031) with invariant cell lin-
eage[SSWT83]. The developmentfor the groupof male
follows the onepattern,as the developmentfor the group

of female(hermaphrodites,i.e maleandfemalein one)fol-
lows anotherpattern. Besides,the chromosomalDNA of
thisorganismhasbeencompletelysequenced,–(with asize
of
���������

nucleotidepairswhich is eight timeslarger than
yeastSaccharomycesand about one half of the fruit fly
Drosophila)–which is as well the casefor somebacteria
andviruses. The humanchromosomalDNA is said to be
sequencescompletely, however the methodsappliedpro-
ducean averageerrorof 	�
� in the results,which is not
thecasewith theDNA sequenceof Caenorhabditiselegans.

The nematode(C. elegans)is a small worm of 	 1.3
mm lengthanda diameterof 	 1/20 of its length. It is a
hermaphroditeandproduces	 300 eggsduring its life. It
is easyto cultivatein the laboratoryon agardishesinocu-
latedwith bacteria(Escherichiacoli) asfood. An egg has
a lengthof 	 60 � m anda diameterof 	 30� m. For more
details,seehttp://wormbase.org.

1.1 Previouswork

The developmentin threespacedimensionsand time has
beenwell studiedby [Se97] and[RJJB99].Thegeneticap-
proachis implementedby [Se97], wherecells are tracked
in spaceandtime after geneticmanipulationsareapplied.
A very promisingapproachis chosenby [Hea01], wherea
syntheticdevelopmentmodelis constructedby visualizing
thefusedsetof all availabledata(e.g.geometricaswell as
chromosomaldataareconsidered).With thedevelopedtool
impactsof DNA manipulationscanbevisualized,sadlythe
tool is not freely avaiorgasismslable. However, it is still
notknown how growth rulesandmorphologicalstructureis
codedon thechromosomalDNA.

1.2 This work

As statedabovethispaperaddressestheproblemof describ-
ing or coding biological development. It begins with the
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dataacquisitionandendsup at a descriptionof 3D and4D
scenewith anormalizedincidencematrix. Theanalysishas
thereforebeenstructuredinto sections:

� A: Geometry. Segmentationof theegg into a growing
mosaicof cells is usingtheeasilyrecognizednucleus
of eachcell. The position of the centerof eachcell
nucleusis representativeof thecell.

� B: Topology. A eigen-vector spacewith coordinate
systemis introducedsuchthat the developmentas a
setof algebraicoperationson segmentsis describable.
Theadjacency of thecell is approximatedby a Delau-
naytriangulationandVoronoitessellationof thenuclei
of theeggsin 3D and4D.

� C: Pattern. In the above vectorspacethe relationbe-
tween4D segmentsof developmentarecharacterized
andthe attemptis madeto understandtheseasbeing
assembledof lower dimensionaltopological objects
(i.e. simplex sets).On theotherhandmatrix methods
areappliedto discover regularitiesin thedevelopment
of thestructure.

1.3 Computational geometry

Throughout this work a set of computationalgeometry
methodis applied which is commonto the aresof pat-
tern recognition and visualization. The Delaunay and
Voronoi algorithm is well known and a huge amountof
work hasbeendoneon e.g. dynamicdelaunayalgorithms
since[ME96] and[ELZ00]. Thedescriptionof 3D scenes
and their developmentin 4D can be well performedwith
e.g. the tensor voting method [MTL00]. Tensorsand
groupsof tensorsmay characterizethe objectsproperties,
synthesizingthese to evolving segments. Distinct ele-
mentmodelingcombinedwith dynamicdelaunaytriangula-
tion [FML00] implementsadiscreteelementalgorithmwith
reducedcomputationalcost. 1 Thesearemethodsto visu-
alize the propertyof a sceneor to run the simulationof a
given modelandmay be employed aswell in the coming
work.

Sincevisualizationis not theprimarytopic of this work
but the constructionof a model is, we have to overcome
someshortcomingsof puredescriptiveandphenomenolog-
ical algorithmswhile wetry to reducetheobservationof bi-
ologicaldevelopmentsto thesetof relatedprimativesmeet-
ing theabovemodelsrequirements.

1It is anumericaltechniquewhichsolvesengineeringproblemsthatare
modeledasa largesystemof distinct interactinggeneralshaped( deform-
ableor rigid) bodiesor particlesthataresubjectto grossmotion.

1.4 Micr oscopicdata

An egg taken from the nematodeis placed in a micro-
scope(NomarskiDifferential InterferenceOptic or Laser
ScanningConfocalMicroscope),� 1500timesenlargedand
scannedin spaceand time. A time sequenceof such
( � 1700)3D-stacksform a 4D dataset i.e. a movie in 3D
format. Thedatasetrepresentsthedevelopmentof anegg
from its zygote(onecell) stateuntil prior to hatching( � 540
cell state).

1.5 The cell lineage

The remarkablefeatureof the C. elegansdevelopmentis
the invarianceof its cell lineageand the constantnum-
ber of cells, of which the worm is madeup (for details
see“http://elegans.swmed.edu/”).The dataof the cell lin-
eagehas been gatheredin a databaseand may be dis-
playedasa treestructureby a computerprogramof SIMI
Inc. (“http://www.simi.net”).Thisprogramnot only allows
to display, but also to modify dataof the database.The
databaseis so organizedthat eachrecordholds dataof a
specificcell, i.e. the nameof a cell; the time of birth; a
referencetime; thearrayof timeposition;andotherdata.

1.6 The adjacencyof cells

Thecell lineageshowsthetimeor causalsequencein which
cells divide and exist during the developmentof the egg.
Thetime framein which thecellsdevision a takesplaceis
followed by a time framein which (a topological)sorting
processof cells is observed. Cells begin to move through
theeggto taketheirfinal functionalposition.Thisphenom-
enais not a priori encodedin thelinagetree,sincecellsdo
not remainat theplacewherethey areborn,andits asnot
necessarilycoveredby ontogeny or phylogeny 2 Thenuclei
of thecellsareclearlyvisible in themicroscope.Their po-
sition in spaceandtime of division canbemonitored.This
allows thedefinitionof a distancematrix betweenthe indi-
vidual nuclei. For thesevencell stateof fig. 1 thedistance
matrix is givenin tab. 2

2i.e. thedevelopmentof theanimalembryoandyoungtracestheevolu-
tionarydevelopmentof thespecies.Thetheorywasinfluentialandmuch-
popularizedearlierbut hasbeenof little significancein elucidatingeither
evolution or embryonicgrowth. Haeckel’s Law (1866):Ontogeny recapit-
ulatesphylogeny, i.e.,anembryorepeatsin its developmenttheevolution-
ary historyof its speciesasit passesthroughstagesin which it resembles
its remoteancestors.(Embryos,however, do not passthroughthe adult
stagesof their ancestors;ontogeny doesnot recapitulatephylogeny (i.e.
the history of the evolution of a speciesor group,especiallyin reference
to lines of descentandrelationshipsamongbroadgroupsof organisms.).
Rather, ontogeny repeatssomeontogeny - someembryonicfeaturesof an-
cestorsarepresentin embryonicdevelopment[Wol91])
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A (top panel):Movie of a Ball-stick modelin the7 cell stage.
Theball areat thepositionof thenuclei. Thesticksconnectballs
of cell neighborsas obtainedby Delaunaytriangulation(mouse
click on the pictureruns the movie) . B(bottomtable)Distance
matrixof A

The squareof Euclideandistanceis � ���� � �! #"%$'& �(�*)
& �  ,+ �*-.$'/ � �0) / �  ,+ �1-2$43 � �5) 3 �  ,+ �

betweennucleus��6
and �87 . Thevalue � � � � �  is enteredat theelement

$'9;:=< +
in

the distancematrix tabletab. 2. This matrix is symmetric
with zerosat the diagonal. The distancematrix gives the
distancesbetweenall nuclei. Of particularinterestfor cells
aretheir neighboringcells. Themathematicalconstruction
of Delaunaytriangulationproducesa relationshipbetween
the nearestneighbors(see[GR97]). It connectsthe nuclei
suchthata netof triangles(in theplane)andof tetrahedron
(in 3D-space)results(seefig. 1). No nuclei lies within a
triangleor tetrahedron,andeven no nuclei lies within the
enclosingcircles or spherethroughthe points (or nuclei)
forming thetriangleor thetetrahedron.Thematrix table2

��� ��� ��� ��� ��� ��� ���� � 1 1 1 0 0 1 0� � 1 1 1 1 0 1 0� � 1 1 1 1 1 1 1� � 0 1 1 1 1 1 1� � 0 0 1 1 1 1 1��� 1 1 1 1 1 1 0��� 0 0 1 1 1 0 1

(3)

Connectivity matrix for figure1

may be simplified in this caseto give the adjacency or
incidencematrix. (seetable 3). The entry of this matrix
aregivenby therule: “if two nuclei (points)areconnected
in the triangulationnet, a > elsea ? is enteredasa matrix
element”.Also thismatrix is symmetricwith onesthediag-
onal.

This adjacency matrixmaynot reflecttherealneighbors
of thecell harboringthecorrespondingnucleisincethenu-
cleusmaynotbethecenterof cell nature.Thetriangulation
only approximatesthegenerationof cells in nature.Never-
theless,if thereis no moreinformationavailable,thenthe
positionof thecell nuclei it is a goodapproximationto re-
ality. For the establishmentof the real neighborhood,the
hulls (membranes)of thecellsshouldbeknown to touch.

1.7 Representationof structures in a vector
space

To meetthemodelsrequirementsfor thedescriptionof pat-
ternsin the development,a “vectorspacechain” with co-
ordinatesystemis introduced.The abstractedorganismis
embeddedanddescribedin thisspace.And its development
canbedescribedwith theboundaryoperator.

Construction of a vector spacechain with a bound-
ary operator: The Delaunaytriangulationforms a vector
spacesetwhereall tetrahedronform thebaseof onevector
space,all triangle (i.e. the surfaceof tetrahedron)form a
basisof anothervectorspaceandall lines connectingthe
nuclei form thebasisof a third vectorspace.Thesevector
spacesare transformedinto eachotherby boundaryoper-
ations. The boundary(or surface)of the tetrahedroncon-
sistsof triangles(i.e. the facetsarebasisof the next vec-
tor space). The edges(lines) of the circumferencetrian-
glesarethebasisof their next vectorspace.Theendpoints
(surface)of the line finally leadto anendof this sequence
by contractingto pointsan basisof a vectorspacechain.
For detailsof their mathematicalconstructionsee[OD71].
Mathematically, eachvectorspacehasanexistingco-vector
space.For theDelaunaytriangulationtheVoronoitessella-
tion is the dual or co-vectorspace.The dimensionof the
vectorspaceandits co-spacesumin thegeometricalrepre-
sentationof thed-dimensionalspaceto � . In theexampleof
theegg theco-spaceto thenuclei (points)is thebiological
cell asa3D volume.Eachline of connectionbetweennuclei
in theDelaunayspacecorrespondsto theareaof a cell sur-
face(membrane)which both cells (or nuclei) sharein the
co-spaceof Voronoi. Eachtriangle in the Delaunayspace
correspondsto a line in thespaceof Voronoi,thatis partof
theborderof sharedcell surfaces(facetsof connectedcells).
Eachtetrahedronof theDelaunayspaceproducesin theco-
spaceof Voronoianendpointof thelinesjustmentioned.In
thispicture,thevisiblecell with its wall (membrane)is part
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of theco-spaceof Voronoitessellationwheretheinnercon-
structionof thenucleiandskeletonof cell maybeassigned
to thespaceof Delaunaytriangulation.

The coefficients in the vector space: Now the cell
structurein the egg canbe representedasa vectorin each
of thesespaces.The vectorspaceof lines (Delaunay)has
ascomponents(coefficients)of thevectorthelengthof the
lines (distancesat Delaunaytriangulation). The triangles
have their areasandthe tetrahedrontheir volumesascom-
ponents.For the Voronoi tessellationthe co-spaceof cells
hasthe volume of eachcell, the co-spaceof contactsur-
faceshasthe areaof the surfaceandthe co-spaceof lines
hasthelengthof eachline of thepolygonssurroundingthe
contactfaceof the cell as components.All thesevector
componentsaredependent(i.e. interrelated),whichmaybe
verifiedsincetheDelaunayaswell astheVoronoistructures
maybe reconstructedfrom the distances(seetab. 2). This
opensthepossibilityto setconditionsnotonly for line com-
ponents(asdistances)but for the whole setof coefficients
usedto describethestructureor phenomenomin thedevel-
opingegg.

1.8 The developmentin 4D

The representationin DelaunaytriangulationandVoronoi
tessellationmaybe straightforwardextendedinto four di-
mensions(spaceandtime)or evenhigher. Thereareseveral
kinds of characterizationof the developmentof the egg in
4D by coordinatesof points(i.e. thepointof nucleicenter).
Oneway is to assigneachcell (nuclei),“as time”, thedivi-
sion time andasspacethe coordinates.The spacecoordi-
natesof centerof nuclei justprior to divisionarecausalde-
velopmentstates.Thatis aroughapproximation,but allows
to get andcheckthe propertiesderivedfor thecell lineage
andthe cell structurein 3D space.The developmentmay
subsequentlyberefinedto displayintermediatestates.The
4D representationis hardto visualizebut advantageousin
a systematictreatmentase.g. anabstraction,a reconstruc-
tion or to find regularitiesase.g. growth rules. These4D
regularitiesmay be understoodas developmentstructures
assembledof lowerdimensionalsimplex sets.

Another possibility to describethe developmentis to
abandonthetimeconceptandusea parameterizedfunction
of boundaryoperations.To implementonestepin devel-
opmentfrom state @BADC (i.e. a topologicaloperationis
appliedto theobject)we do simply observe theboundaries
of the two statesdevelopment.Comparingthesefacetsets
resultsin afunctionfor facetoperation.Moreexactthefacet
setof EGF @IHJC is thedifferencebetweenstate@ and C .
Since @ and C areentitiesin 3D, their boundaryfacetsetE is thatwhatrepresentsthedevelopmentin 4D. This func-
tion canlaterbederivedwhenthenormalizedconnectivity

matricesaredealtwith. Theparameterizedfacetoperation
function is the topologicalcounterpartof the above men-
tionednegative entropy productiondensity. Furtherit ap-
pearsto besensibleto considerin thefollowing structured
or orderedfacetendsimplex sets.Algebraicsetoperations
canthateasilyformulatecomplex scenes.

1.9 Coding the topology

The objectsdataconsistsof a geometric(metric) part (i.e.
pointcoordinatesordistances)andatopologicalpart,which
describestheconnectivity within theobject.Thegeometri-
cal dataarerepresentedusuallyby realnumbers(point co-
ordinates),wherethetopologicaldataaregivenby relations
betweenabstract“names”(i.e. pointsarenumbered).Now,
the connectioneven in the 4D canbe representedasa se-
quenceof integersfor lines,poly-linesandpolygons(closed
poly-lines)andalsofor triangles,trianglestrips(poly trian-
gles)andclosedtrianglestrips(which areanequivalentto
polygons).This maybeextendedto the tetrahedron,tetra-
hedronstripsandclosedtetrahedronstripsin the3D space.
And further to pentahedron,pentahedronstripsandclosed
pentahedronstrips in 4D space.In the 4D exampleof the
developmentof the egg, the pentahedronstrip representa-
tion of the Delaunaytriangulationgives a very compact
representation.Theconnectivity of pentahedronstructures
maybecodedin a matrixwith simplicesasindex.

1.10 Matrix Coding of Simplices

The table 3 gives an examplefor the connectivity in the
sevencell stage.Cellsthattouch(connect)at a time (stage)
have a 1 asmatrix element.Thematrix is symmetricsince
theassignmentof theendpointsto therow andcolumnis ar-
bitrary. A 2D-simplex (triangle)mayberepresentedin that
the identifying numbersof threepointsaretakenasthe in-
dicesof amatrixwith 3 indices.Also in thiscaseall permu-
tationof thethreeindicesresultin thesamesimplex entered
asa 1. In thesimilar a mannerthe connectivity for higher
dimensionsmay leadto a matrix representation.This rep-
resentationwill benormalizedby analyzingthestructureof
permutationgroupswhich the above type of connectivity
matrix is assignedto.

1.11 Connectivity Matrix of Simplices

Themethodof depictingtheconnectivity betweenpointsby
matricesmaybeextendedto higherdimensionalsimplices.
The simplices(e.g. a line) may be sequentiallynumbered
as in the former casethe vertices(nuclei). The numbers
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assignedto then-dimensionalsimplicesmaybeusedasin-
dicesto a matrix. If a simplex (e.g. a line) is connectedto
anothersimplex (i.e. a neighboringline), anentry is made
in the connectivity matrix. As in the former casethe con-
nectivity structureof n-dimensionalsimplicescanbevisu-
alizedasdot plot. Analogouslythree1-simplicesbuild one
3-simplex (a triangle).Thetrianglecanberepresentedin a
matrixwith 3 indicesof thelinesandsofor theconnectivity
of thehigherdimensionalsimplices.This allows to visual-
ize connectivity structuresof higherdimensionalspacesof
simplicesin a lowerdimensionalgraph.

1.12 Dotplot visualization of 4D pentahedron
connectivity

The matrix representationallows the visualizationof the
connectivity by tools developedin matrix computerpro-
grampackages.The dot diagramin which eachnon zero
entry in the 2D matrix is printed by a dot at the position
givenby thematrix indeces.By this plot thematrix struc-
turesbecomeclearlyvisible. Figure1 shows sucha matrix
structureof thepentahedronconnectivity of C.elegans.
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Figure1: 4D pentahedronconnectivity simplexmatrix for the
developmentof C.elegans.The matrix has45 pentahedron as
indicesand onedot is assignedwhentwo pentahedron arecon-
nected.This representationof developmentis not jet unique.

1.13 Incidencematrix normalized by TDO

The algorithm “Tactical Decomposition by Ordering”
(TDO) permutesrows and columnsof the incidencema-
trix so that a normalizedmatrix results (see for details
D.Betten[BBT01] and [BB99]). By this methodthe va-
riety of homeomorphicmatrices(andtheir geometricrep-
resentationsis groups)areprojectedto a uniqueform. For

a systematicrepresentationor classificationof connectiv-
ity in a network suchnormalizedformsareneeded.Since
theincidencematrix becomeslargefor increasingnumbers
of nodes(or cells)we do only considerthe4-cell-, 6-cell-,
8-cell-, 12-cell-stageshere(seefig. ). A partof the devel-
opmentof the organismis expressedin the transformation
from the 4-cell-stageto the 15-cell-stagemy mappingthe
consecutive matricesto thenext stageof development(i.e.
thegeometryit represents).Sincethematrices(matroidi.e.
matricesonly with K or L entries)may be convertedin a
geometry, themapsdescribea developmentof a geometric
shapein space.In particularin 4D space(time and3D) a
tdo normalizematroiddescribesthecompletedevelopment
of shape.Also in 3D thesequenceof mapsmaygive infor-
mationabouttherulesthatgovernthedevelopingshapeof
anorganism.Thisaswell opensupanapplicationto search
in theabove4D incidencematrixfor acertainpatternor edit
thepatternfor re- or for constructionof theorganism.The
experimentallyappliedbiochemicalmodificationto theor-
ganism,that resultsin a modifieddevelopmentwould have
herea unique“pattern food print” andthusaswell in the
associatedequationof development.Thematricesarenow
vertically (row) indexed with simplex names,in this case
1D pointsnumbered1 2 3 andsoon. Horizontallythema-
tricesare(column)indexedby their connectivity elements,
i.e thosefacetswhich implementtheconnectivity.

Figure2: TDO normalized incidencematricesrepresent
the connectivity betweencells and the development of
the 6–cell stage. —Aut— gives the possibleautomor-
phism. The sequenceTDO normalized incidence ma-
trices, where eachstate is characterized by one matrix
describesthe development. Row indices are cells, col-
umn indicesarecell contacts.The number of rowsgives
the cell stagein the egg. The digits and letters at the
top of the matroid are a symbolic ascii sequencefor the
connectivity elementsstarting with L . Given is the row
and column permutation of the original matroid order.
A square in a meshof grid meansthe cell is the row is
involved in the contactof the column.
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2. Summary and Conclusions

We like to show how to describedthe developmentof a
growing biological organismin a consecutive sequenceof
vectorspaces.The methodemploys matrix operationsto
formulate(or code)thetopologicalcharacteristicsof exam-
ineddevelopingstructuresin thevectorspacessequence.

Operationson normalizedincidencematriceslead to a
visualizationof building blocks (or modules),whereone
building block may capturegeometricobjectsof common
function.

A softwareis beingdevelopedto analyzetheC. elegans
embryosgrowth processin real-time. It is possibleto de-
scribeembryosbiologicaldevelopmentandto comparede-
velopmentwith thatof otherembryos.Thereforea control
criteria for biological developmentis provided. This con-
trol criteriamaybeusedto manageanexperiment,to esti-
mateits developmentor to abortan experimentin caseof
anC.elegansembryorunningout of control.
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